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A new algorithm for discretization of the GCM eigenvalue problem is proposed. It is tested 
on the H-atom ground state with Gaussian basis. It is found that the new method, as 
compared with existing methods, gives a better compromise between accuracy and 
computational speed. 

1. INTRODUCTION 

The generator coordinate method (GCM) is a variational method [I] which is now 
well established and which has been used mainly in nuclear physics for the past 20 
years [2]. Recently the method has also been proposed [3,4] in connection with 
problems of atomic and molecular physics. 

In the GCM the trial function y is formally written as a continuous superposition 
of generator basis functions @(a), depending on the generator coordinates a, 

v/ = I da f(a) $(a>. (1) 

The variational principle then leads to an integral equation (Hill-Wheeler equation) 
for the amplitude f(a), 

s da’ [H(a, a’) - EN(a, a’)] f(a’) = 0 (2) 

with the overlap kernel 

Nay a’) = (#(a) I#(0 (3) 

and the Hamiltonian kernel 

f% a’) = MaI HI $(a’)). (4) 

An analytic solution of the Hill-Wheeler equation (2) can be obtained only in a 
limited number of simple cases. In more realistic applications, the GCM problem has 
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hitherto been treated through discretization of the continuous variable a, an approach 
which has been given a rigorous mathematical foundation in [5]. In actual numerical 
work the problem of choosing the discretization points ai is a central one. Three 
criteria must be balanced against one another: convergence (i.e., the results should be 
quasi-exact within the GCM model space), compactness (i.e., the results should be 
represented by as few discretization points as possible), and computational speed. 
The methods of discretization used so far usually stress one of these criteria. 

After an examination of existing methods, we propose an algorithm which strikes a 
balance between the above criteria. It is compared to existing techniques in a test 
case. 

2. DISCRETIZATION TECHNIQUES IN GCM 

Discretization techniques in GCM cannot be justified as straightforward approx- 
imations of the formal integral (1). Rather, these techniques should be based on a 
theorem [5] stating that the continuous variational basis 

r= W)la E RJ (5) 

of the model space 

eCM = waW) (6) 

can be replaced by a (not necessarily unique) countable basis 

such that 

(7) 

This implies that the ansatz (1) is equivalent to 

WC IF Ci#(a,) 
i=l 

which leads to 

f (Hi, - EN,) c, = 0 
j=l 

(9) 

with 

instead of (2)-(4). 

Nij = Ma,) I #(a,)), 

H*j = MaiWW(aj>> 
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The numerical problem therefore consists in approximating 
finite sum 

ly = 2 c;“‘qqai). 
i=l 

Whether the finite set of a’s converges, with increasing n, to a 

the series (9) by a 

(13) 

basis r,, depends on 
the algorithm for choosing the a’s and on H and q& Such a proof has not been found 
neither in general nor for the algorithm we will propose. 

The variational principle suggests that the discrete values czi should be chosen such 
that the energy Et”’ given by 

(14) 

be minimum. This must, however, be balanced against the other criteria mentioned 
before. 

Four main types of discretization techniques have appeared in the literature. They 
have their respective merits and shortcomings to be taken into account for the 
problem under consideration: 

(a) those that choose a larger number of points a: e.g., by equidistant spacing 
around the minimum of the energy curve (or surface) E(a) = H(a, a)/N(a, a) [6] or 
some other way of parametrizing the sequence a, [7]; 

(b) those that choose the at by some quadrature rule, e.g., as in [3], with a 
variationally optimized generator-coordinate domain; 

(c) the iterative method originally proposed by Caurier [8], in which for a 
given (a, ... a,-,) that point a,, is added for which the lowest ground state energy is 
obtained with (14); 

(d) the optimum procedure, i.e., optimization [9] of all parameters involved. 

3. VARIATIONAL DISCRETIZATION ALGORITHM 

In this section we propose a new method for choosing the discretization points ai 
which is iterative and variational. The first point ai, is that for which E”‘(a) = 
H(a, a)/N(a, a) is minimum. 

The first approximation to the eigenvector is then I$ = #(al) N;i”*. Now suppose 
that n - 1 points (a, . . - a,-i) and the corresponding ground state I#‘-‘) have been 
determined. The nth discretization point a,, is chosen such that the energy obtained 
from the 2 x 2 matrix problem with I#+‘) and #(a) is minimum. Once a,, has been 
determined in this way, the nth approximation to the energy Et”) and wave function 
w(“) are given by the solution of the n X n GCM matrix problem (14). 

Each candidate a,, examined during the nth iteration necessitates the calculation of 
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the matrix elements H,, and N,, (m = 1, 2,..., n). This has to be followed by the 
solution of a secular equation of dimension 2 in this method and of dimension n in 
Caurier’s method. Thus our method is always faster, but the reduction in computer 
time will not be so significant in a problem in which the matrix element computation 
is rate-determining. The advantage of the final n X n diagonalization to obtain E(“) 
and I#“) is that the next value a,,, will necessarily be different from all previously 
chosen ai. Indeed the coefficients ci”) are already optimized through (14). One 
advantage of the iterative method is that one can estimate the stability of the results 
from a comparison of successive approximations. The numbers dE(“’ = E(“) - E’” + ‘) 
and A$“) = )I y,(n) - y/n+ 1) I( should be significant in this respect. The algorithm 
carried through to n steps yields approximations to the lowest n eigenvalues and 
eigenvectors. In order to improve still on the excited states, the same algorithm can 
be used, now however with the generator basis function 4’(a), which is the 
component of 4(a) orthogonal to the previously determined eigenvectors. 

As in the other discretization methods, the well-known problem of numerical linear 
dependences, which is related to the ratio E of the smallest to the largest eigenvalue of 
the overlap matrix N (calculated with normalized basis functions) can occur. Due to 
the fact that in our algorithm a judicious choice of a relatively small number of 
generator coordinate values is made, it is to be expected that these linear dependences 
will not occur before a large number of iterations. This is demonstrated in the test 
case reported in’ Section 4 (cf. Table I). 

4. A TEST OF THE NEW METHOD 

As a test for the variational discretization we have considered the GCM 
description of the hydrogen atom ground state, using Gaussian generator basis 
function, This exactly soluble problem [lo] has been investigated previously both as 
a test case for GCM [6] and in connection with “Gaussian orbitals” in atomic and 
molecular physics [7, 9, 111. In Refs. [9, 1 l] the 1s ground state wave function 
exp(-r) is approximated by an expansion CA, exp(-a,?) and all parameters are 
optimized. In the context of GCM one would interpret this as a discretization 
corresponding to a generator basis of dilated Gaussians and using method (d) of 
Section 2. 

In atomic units (a.u.) the hydrogen Hamiltonian is 

and with the generator basis functions 

#(b) = exp(-r*/b*). (16) 
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TABLE I 

Variational Discretization Results for the H-Atom Ground State 

n” E’“’ b AE’“’ b AE’“’ b 
x 

A,#“’ C A,#“’ C 
x Ed 

1 -0.42379089 
2 -0.47410269 
3 -0.49275755 
4 -0.49683577 
5 -0.49771000 
6 -0.49843 110 
I -0.4988 1342 
8 -0.49897151 
9 -0.49997875 

10 -0.49998238 
11 -0.49999552 
12 -0.49999795 
13 -0.49999806 
14 -0.499998 11 
15 -0.49999885 
16 -0.49999895 
17 -0.49999895 
18 -0.49999896 
19 -0.49999934 
20 -0.49999947 
21 -0.49999947 
22 -0.49999974 
23 -0.49999974 
24 -0.49999989 
25 -0.49999989 
26 -0.49999989 
27 -0.49999998 
28 -0.49999998 
29 -0.49999998 
30 -0.49999999 

5E-2 
ZE-2 
4E-3 
9E-4 
7E-4 
4E-4 
ZE-4 
lE-3 
4E-6 
lE-5 
ZE-6 
lE-7 
5E-8 
7E-7 
lE-7 
3E-9 
lE-8 
4E-7 
lE-7 
5E-9 
3E-7 
9E-10 
2E-7 
3E-9 
5E-11 
8E-8 
2E-9 
7E-9 
2E-9 

8E-2 
3E-2 
7E-3 
3E-3 
2E-3 
2E-3 
lE-3 
lE-3 
ZE-5 
2E-5 
4E-6 
2E-6 
2E-6 
2E-6 
lE-6 
lE-6 
lE-6 
lE-6 
7E-7 
5E-7 
5E-7 
3E-7 
3E-7 
lE-7 
lE-7 
lE-7 
2E-8 
2E-8 
2E-8 
lE-8 

2E-2 
2E- 1 
lE-2 
2E-2 
8E-3 
3E-2 
8E-4 
3E-2 
3E-5 
3E-4 
4E-5 
2E-6 
3E-4 
2E-4 
lE-5 
lE-7 
2E-4 
2E-4 
4E-4 
5E-7 
ZE-4 
lE-7 
2E-4. 
7E-5 
lE-7 
2E-4 
4E-6 
SE-6 
7E-7 

2E- 1 lE-0 
2E- 1 3E-1 
4E-2 8E-2 
4E-2 4E-2 
4E-2 6E-3 
4E-2 3E-3 
3E-2 2E-3 
3E-2 ZE-3 
5E-4 4E-4 
5E-4 lE-4 
5E-4 lE-4 
5E-4 lE-4 
5E-4 lE-4 
4E-4 lE-4 
4E-4 lE-4 
4E-4 lE-4 
4E-4 lE-4 
4E-4 lE-4 
4E-4 2E-5 
2E-4 2E-5 
2E-4 2E-5 
2E-4 3E-6 
2E-4 3E-6 
2E-4 4E-7 
2E-4 3E-7 
2E-4 3E-7 
lE-4 2E-8 
lE-4 lE-8 
lE-4 lE-8 
lE-4 lE-8 

0 Iteration number. 
b Energy, energy gain, and energy error in atomic units. 
c Wave function gain and wave function error. 
d Indicator for numerical linear dependences. 
(Last five columns in notation XE - y  = x X lOmy.) 

The kernels (3) and (4) are easily calculated [ 13 1: 

N(b, b’) = d” (-$ +&)-“I 

H(b, b’) = 3~” b’jb,~ (~+~)5’*-2~(~+j$)’ 
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The algorithm described in the previous section was applied. The minimization fixing 
the value of an was made simply by scanning an equidistant grid in the b-interval. We 
have found that the application of a more refined method of minimization in this step 
does not improve the overall performance of the method after a number of points a,,. 
This yielded a distribution of b-values which was highly peaked at small b 
(b < 0.1 a.u.). This indicated that many narrow Gaussians are needed to approximate 
the cusp of the true wave functions exp(-r), while a few broad Gaussians are 
required to fit the tail. We therefore changed our generator coordinate to a = b114, 
now scanning an equidistant grid of a-values, in the interval [0.2, 2.21 so as to obtain 
a high density and resolution of b-values where it is needed. The distribution of a- 
values then becomes almost homogeneous. This change did indeed significantly 
improve our results. The results, for each iteration, are collected in Table I: the 
energy Et”), the energy gain LL?P = EC”) - E’” + ‘) and energy error w.r.t. the exact 
value of -0.5 a.u., L&?$” = EC”) + 0.5, the wave function gain d@“’ = I] #“) - @+‘)(], 
and wave function error w.r.t. the exact wave function &I,“’ = ](exp(-r) - $“)I(. In 
Table II the generator coordinate values are given. The calculation was stopped, 
arbitrarily, after 30 iterations. 

An inspection of Table I shows that the convergence to the exact result is good, 
both for the energy and the wave function. Indeed, the resulting representation of the 
Slater 1s orbital be meanss of Gaussian orbitals is probably the best existing in the 
literature (dy/, . (30) = 0 96 X 10P4). The table also shows that there exist strong positive 
correlations between the several gains and errors, demonstrating that dE(“’ and d$“’ 
are meaningful indicators, not only for stability but also for convergence of energy 
and wave function. Finally we have plotted in Fig. 1 how the convergence proceeds 
as a function of n. One notes that the rate of convergence is not monotonic but slows 
down now and again. 

We can compare these results with those obtained from the existing methods. In 
[6] method (a) was used with 50 points, yielding an energy of -0.4994 a.u. An 

TABLE II 

Generator Coordinate Values b, Obtained by Variational Discretization for the H-Atom Ground State 

n b, n 4, n 4, 

1 1.16 11 0.6 21 0.316 
2 0.92 12 0.42 22 0.9832 
3 1.4 13 0.28 23 0.2356 
4 0.68 14 1.98 24 1.1048 
5 1.04 15 0.74 25 1.7956 
6 0.8 16 0.461333333 26 0.23 1644444 
7 1.64 17 0.204977778 27 1.22062222 
8 0.52 18 2.2 28 0.641066667 
9 1.28 19 0.857777718 29 0.553777778 

10 0.36 20 1.5 1768889 30 0.388088889 
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FIG. 2, Cumulative computation time vs. iteration number in arbitrary units. (a) Variational 
discretization; (b) Caurier’s method. 
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increase of the number of points did not improve the energy, which shows that this 
method is not suitable to obtain high accuracy. We have, ourselves, applied method 
(c) to this problem, and obtained (with identical scanning as for Table I) an energy 
of -0.499166 a.u. at n = 5 and -0.499990 a.u. at n = 10. In [7] Raffenetti 
parametrized the Gaussian width parameter by a geometric progression b;* = c$ 
and minimized the energy with respect to a and p. This method is more economical 
and yields slightly better results but, of course, it is an ad hoc procedure not 
generalizable to other GCM problem. In [9], which also covers the results of [ 111, 
Sambe used method (d) to obtain an energy of -0.499805 a.u. at n = 5 and 
-0.499999 a.u. at n = 10. Comparison with the numbers in Table I shows that the 
new method needs roughly twice as many points to have an energy of the same 
quality. 

There is, however, an important gain in computation time w.r.t. methods (c) and 
(d). In Fig. 2 we plot the cumulative computation times of the new method and 
method (c) in arbitrary units (both were run on a Tektronix 405 1 desk computer with 
identical scanning procedure). 

5. CONCLUSION 

In this paper we have examined the discretization techniques used in the GCM. In 
view of the need for a method which combines high accuracy with low computation 
time, we have proposed a new method. From an application of this method to the 
hydrogen problem with a Gaussian basis, we conclude that it is indeed satisfactory. 
Its accuracy and compactness compare favourably with full optimization, while its 
computation time is orders of magnitude shorter. As far as accuracy, as a function of 
time, is concerned this new variational discretization method is superior to the 
existing methods. 
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